Понижающий резистор АКПП: где стоит и что это такое

ПїЅ, Hyundai ix55. Автозапчасти. Москва

Для чего нужен понижающий резистор АКПП

Понижающий резистор коробки автомат

Чтобы понять, где находится понижающий резистор АКПП и для чего он нужен, давайте рассмотрим данный элемент более подробно. На сегодняшний день, практически  все АКПП комплектуются понижающими резисторами. 

Понижающий резистор, являясь одним из составляющих элементов коробки автомат, отвечает за плавное (без рывков) переключение передач с первой скорости на вторую.

Чтобы определить, где стоит понижающий резистор АКПП, водителю достаточно открыть техническую документацию (мануал)  к транспортному средству. В инструкции указано место расположения (схема АКПП), тип и номинал понижающего резистора.

Внешне данный  радиоэлемент  очень напоминает  элементы, устанавливаемые на бытовую технику. Чтобы защитить резистор от влаги и грязи, его устанавливают под капотом автомобиля, недалеко от корпуса АКПП. Данный элемент имеет дополнительную небольшую защиту в виде «козырька» (щитка).

ЭБУ АКПП устройство принцип работы

Рекомендуем также прочитать статью о том,

как работает ЭБУ АКПП

. Из этой статьи вы узнаете о принципах работы и устройстве блока управления автоматической коробкой передач.

В зависимости от конструктивных особенностей автомобиля резистор АКПП может располагаться в разных частях корпуса.  Например, в автомобилях NISSAN резистор АКПП («дроп-резистор») расположен под воздушным фильтром в металлическом корпусе, прикрепленном двумя болтами.

Если говорить о том, какие функции выполняет понижающий резистор АКПП,

электронный блок управления АКПП 

посылает различные импульсы радиоэлементам, в том числе и понижающему резистору. Данные элементы, в свою очередь, меняя свои показания, влияют на работу АКПП.

В данном случае, понижающий резистор, получив импульс от электронного блока управления, передает напряжение на соленоид, управляющий давлением в контуре АКПП. Таким образом, резистор влияет на то, до какого предела открыть соленоид.

В свою очередь, трансмиссионная жидкость, протекающая под давлением, способствует плавному переключению скоростей в коробке передач. Это и есть работа понижающего резистора, в функции которого входит корректировка плавности переключения скоростных режимов путем подачи сигнала управления давлением переключения.

По умолчанию

Цитата

Сообщение от

ТЧМ-6 Посмотреть сообщение

Я тут в интернете полазил и нашёл статью про Ниссан , так вот у них на каких то моделях именно под капотным пространством стоит этот самый понижающий резистор в алюминиевом корпусе .
Я просто думаю , что может контора что производит АККП для Тойота , как то решили эту проблему и обошли её другим путём .

На машинах я знаю лишь один понижающий резистор — он раньше стоял перед первичной обмоткой катушки зажигания. Отключался при работе стартера для усиления искры при пониженном напряжении в контактной системе зажигания.

Архив объявлений

Смотрите все объявления в архиве

Физическое определение

Резистор — это элемент, использующийся в электрической цепи и не требующий для своей работы источника питания. Предназначен он для трансформирования силы тока в напряжение и обратно. Кроме этого, он может преобразовывать электрическую энергию в тепловую и ограничивать величину тока. Но перед расчётом падения напряжения на резисторе желательно разобраться в сути этого процесса.

Резистор — весьма распространённый элемент, характеризующийся рядом параметров. Основными из них являются:

  • сопротивление;
  • величина рассеиваемой энергии;
  • рабочее напряжение;
  • мощность;
  • устойчивость к влиянию окружающей среды;
  • паразитная составляющая.


Пассивный электрический элемент обозначается на схеме в виде прямоугольника с двумя выводами из середины его боковых сторон. В центре фигуры может указываться мощность римскими цифрами или чёрточками. Например, вертикальная полоска обозначает выдерживаемую мощность элемента, равную 1 Вт. Перечёркнутый прямоугольник в обозначениях на схеме указывает, что такой резистор является переменным.

Резисторы могут выпускаться с постоянным и переменным сопротивлением. Разновидностью вторых являются подстроечные элементы. Отличие их от переменных заключается лишь в способе установки нужного значения.

На схемах и в технической литературе устройство обозначается латинской буквой R, рядом с которой указывается порядковый номер и его номинал в соответствии с Международной системой единиц (СИ). Например, R12 5 кОм — резистор на пять килоом, расположенный в схеме под 12 номером.

При изготовлении элемента используется резистивный слой, который может быть плёночным или объёмным. Он наносится на диэлектрическое основание, а сверху покрывается защитной плёнкой.

Значение сопротивления

Сопротивление является фундаментальной величиной в электрических процессах. Его значение неизменно связано с током и напряжением. Их общая зависимость описывается с помощью закона Ома: сила тока, возникшая на участке цепи, прямо пропорциональна разности потенциалов между крайними точками этого участка и обратно пропорциональна его сопротивлению. Из этого закона находится сопротивление по следующей формуле:

R = U / I, где:

  • R — сопротивление на участке цепи, Ом.
  • I — сила тока, проходящая через этот участок, А.
  • U — разность потенциалов на узлах части схемы, В.

Фактически же сопротивление элемента определяется его физической структурой и обусловлено колебаниями атомов в кристаллической решётке. Поэтому все материалы различаются на проводники, полупроводники и диэлектрики в зависимости от способности проводить электричество.


Ток — это направленное движение носителей заряда. Для его возникновения необходимо, чтобы вещество имело свободные электроны. Если к такому физическому телу приложить электрическое поле, то перемещаемые им заряды начнутся сталкиваться с неоднородностями структуры. Эти дефекты образуются из-за различных примесей, нарушения периодичности решётки, тепловых флуктуаций. Ударяясь о них, электрон расходует энергию, которая преобразовывается в тепловую. В результате заряд теряет импульс, а величина разности потенциалов уменьшается.

Но закон Ома можно применить не для всех веществ. В электролитах, диэлектриках и полупроводниках линейная зависимость между тремя величинами наблюдается не всегда. Сопротивление таких веществ зависит от физических параметров проводника, а именно — его длины и площади поперечного сечения, при этом оно чувствительно к изменению температуры.

Эта зависимость описывается с помощью формулы R = p * l / S. То есть сопротивление прямо пропорционально длине и обратно пропорционально площади проводника. Величина p называется удельным сопротивлением и определяется типом материала. Его значение берётся из справочника.

Импеданс резистора

Закон Ома применим для идеального резистора, не обладающего паразитными сопротивлениями. Полное сопротивление (импеданс) определяется исходя из эквивалентной схемы. Точный расчёт сопротивления для понижения напряжения необходимо проводить по другим формулам. Эквивалентная схема резистора, кроме активного импеданса, содержит также ёмкостное и индуктивное сопротивление.
Первое приводит к медленному накоплению заряда, который рассеивается при изменении направления тока. Чем больше паразитная ёмкость, тем дольше она заряжается. Соответственно, чем быстрее ток изменяет своё направление, тем меньше его ёмкостное сопротивление. Второе же характеризуется магнитным полем, чье появление мешает току изменять направление, поэтому, чем быстрее ток изменяет своё движение, тем больше становится индуктивное сопротивление.

Импеданс вычисляется по формуле: I = U/Z, где Z = (R2+(Xc-Xl)2)½. Где:

  • R — активное значение, R = p*l/s.
  • Xc — ёмкостная величина, Хс = 1/w*C.
  • Xl — индуктивная величина, Хl = w*C.
  • w- циклическая частота, w = 2πƒ.

Зная полное сопротивление резистора, можно точнее рассчитать падение напряжения в нём. Но для измерения паразитных составляющих понадобится использовать узкоспециализированные приборы. В обычных расчётах сопротивление вычисляют, учитывая только его активное значение, а паразитные величины принимают за ничтожно малые.

Как избежать проблем?

Необходимо сказать, что причины неисправности АКПП могут иметь как объективный характер, вызванный физическим износом, так и быть спровоцированы неправильной эксплуатацией этого узла. Многие автовладельцы пренебрегают необходимостью регулярной замены трансмиссионного масла, что приводит к проблемам со смазкой и неизменному перегреву акпп. Как результат подвижные элементы коробки быстро выходят из строя и требуют проведения дорогостоящего ремонта.

Также требуется правильно прогревать трансмиссию в зимнее время года, что избавит от проблем со смазкой подвижных элементов трансмиссии. Некачественное масло выводит из строя соленоиды, замена которых представляет определённую сложность и имеет высокую стоимость. Следует также помнить о том, что автоматические коробки передач крайне критичны к агрессивной манере вождения автомобиля. При длительной работе двигателя на максимальных оборотах фрикционы коробки автомат могут быстро прогорать и стачиваться. Именно поэтому постоянно практиковать агрессивный стиль вождения на автомобиле с автоматической коробкой передач не рекомендуется.

Сложность ремонта автоматических коробок передач обусловлена тем фактом, что определить поломку можно исключительно вскрыв трансмиссию. Для этого её необходимо снять с автомобиля, что и позволит определить характер поломки. Самостоятельно выполнить качественный ремонт автоматической коробки передач не представляется возможным большинству рядовых автомобилистов, поэтому необходимо обращаться в специализированные сервисные центры. Ремонтные работы заключаются в замене повреждённых элементов, что и позволяет восстановить работоспособность всей автоматической коробки передач. Необходимо отметить, что в силу конструктивной сложности проведение ремонта АКПП отличается трудоемкостью и высокой стоимостью.

Как самому определить состояние коробки автомат — Видео

Мастера автосервисов выделяют

3 уровня диагностики:1. Быстрая диагностика — «Услышать»

Из сбивчивого торопливого рассказа водителя показались симптомы легкой неисправности типа: «очистить от масла датчик» или «проверить шлейф, запитывающий ЭБУ и соленоиды» — это, как правило, бесплатная диагностика. Но может быть проблема и посерьезнее, грозящая капремонтом с разборкой, но это уже другой уровень.

Самолечением здесь может послужить обычная замена масла в АКПП или выставление оптимального уровня масла. Это бывает с четырехступками, прошедшими около 200000 км.

2. Тактильный уровень — «Потрогать»

На этом уровне обычная проверка электроцепи может помочь. Это дело нескольких минут. Более серьезную неисправность можно выявить путем снятия поддона. Это все недорогая диагностика АКПП.

Также без демонтажа специалисты могут поставить диагноз при помощи: стол-теста, проверки давления на линии, проверки исправности электропроводки и снятия кодов неисправностей.

Самолечение здесь такое же как и в первом случае — долив или полная замена масла.

Если очевиден аварийный режим автомата (постоянная 3-я передача) или какая другая неисправность из приведенных ниже, то для более точной диагностики необходима разборка. Это характерно для коробок прошедших более 200000 км. к этому пробегу подходит пора замены фрикциона ГДТ.

Дефектовка со стопроцентной точностью даст только «вскрытие» АКПП.

Выход из строя понижающего резистора АКПП и способы устранения неисправности

Понижающий резистор АКПП диагностика

Такие проблемы как возникновение рывков или пинков при переключении с первой на вторую передачу не всегда требуют сложного решения. Вероятнее всего, причина может быть в вышедшем из строя понижающем резисторе.

Если резистор по тем или иным причинам не выполняет свои функции, переключение скоростей будет максимально быстрым и резким. Как следствие, результатом становится возникновение толчков и рывков с небольшой пробуксовкой.

Способы устранения неисправностей:

  • проверка работоспособности понижающего резистора АКПП (с помощью Омметра или мультиметра замеряют сопротивление, которое должно соответствовать сопротивлению, указанному в мануале). В случае несоответствия резистор меняют.
  • на место устанавливают слетевшую проводку резистора (элемент проверяют на целостность, устанавливают на место провод и проверяют сопротивление).

Обратите внимание, если проблему не удалось устранить самостоятельно, необходимо обратиться на СТО для проведения полной диагностики и выявления поломки. Возможно, проблема жесткого переключения передач не связана с понижающим резистором АКПП.

Скоростные коробки передач (АКПП)

Тойота поддерживает установку автоматов Aisin. Присутствует на автоматической КПП кнопка shift lock. Ее основная функция – запуск механизма снятия блокировки с трансмиссии, когда силовая установка выключена. Овердрайв – это повышающая передача. Она активизируется при движении по трассам. Автомобили, которые могут поддерживать установку АКПП:

  • Toyota Corolla.
  • Toyota РАВ4.
  • Toyota Avensis.
  • Toyota Auris.
  • Toyota Hilux.

КПП модели A540E

Автомобиль Toyota Camry поддерживает установку КПП модели A540E. В данном случае особое внимание нужно уделять гидротрансформатору и масляной системе. Коробка хорошо выдерживает большие нагрузки.

Машины Тойота оснащаются понижающим резистором. Где находится понижающий резистор? На иномарке понижающий резистор АКПП расположен за воздушным фильтром (имеет металлический корпус). Его функция заключается в осуществлении контролирования давления залитого в КПП масла при смене скоростей. В том случае, если автомат стал «пинаться», обязательно нужно диагностировать резистор.

АКПП U341F

Для модели Corolla создана КПП U341F. Как правило, она рассчитана на 4 ступени. Основная отличительная черта данного агрегата – выносливость. АКПП Тойота А340 и А440 имеют большой эксплуатационный срок. Они могут встречаться на модели Тойота Ленд Крузер. Если придерживаться размеренного стиля поездки, не пренебрегать прохождением ТО, КПП проработает несколько сотен тысяч км.

Статья в тему: Коробка переключения передач ВАЗ 2114 — что это?

Признаки неисправности понижающего резистора

Вначале разберемся для чего нужен понижающий резистор. Основная функция понижающего резистора, это понижение тока на управляющем клапане основной магистрали акпп, так называемого соленоида линейного давления. Если выразится проще, то резистор нужен для того, что бы мозги акпп смягчали переключение скоростей. Если отключить понижающий резистор, то скорости будут переключаться на максимальном давлении, которое может создать масленый насос акпп, от сюда и пинок при переключении с 1 на 2 передачу.

Понижающий резистор в хорошем состоянии должен выдавать от 11.2 Ом до 12.8 Ом. Так же резистор способен нагреваться во время работы, особенно если он просится на замену, пробовать охладить его какими-то подручными способами не имеет смысла — проще купить новый, нагревается он от проходящего через него тока.

Если ваша акпп пинается с 1 на 2 передачу, особенно на высоких оборотах, а в остальном вас не беспокоит своей работой, то с большой вероятностью можно приговорить понижающий резистор.

Какие АКПП устанавливались на Nissan Maxima

Производство машин Nissan Maxima (на европейском рынке более известные как Nissan Maxima QX) началось в далеком 1981 году. Первые автомобили выпускались под маркой Datsun, а с 1984 года они стали относится к марке Ниссан. С того же года «японец» уже мог похвастаться наличием 4-хступенчатой АКПП.


Nissan Maxima QX A32


Nissan Maxima QX A33

На протяжении всего долгого пути от простого седана эконом-класса 80-х до полноразмерного авто 2000-х Ниссан Максима сменил несколько типов автоматической трансмиссии, придя в 2008 году к единственному исполнению – роботизированной КПП. Какие коробки «автомат» устанавливались на поколения японского авто можно проследить по таблице, представленной ниже:

Поколение (код кузова) Годы выпуска Наименование АКПП
Первое (G910) 1981 – 1984 4-ступ. Jatco L4N71B
Второе (PU11) 1984 – 1988 4-ступ. RL4F02A
Третье (J30) 1988 – 1994 4-ступ. 88-94 RE4F02A, SE 91-94 RE4F04V
Четвертое (А32) 1994 – 1999 4-ступ. RE4F04A/B
Пятое (А33) 1999 – 2002 4-ступ. JF403E
Шестое (А34) 2003 – 2008 4-ступ. RE4F03A, 5-ступ. JF506E

ЧитатьРемонт АКПП Land Rover Discovery 3

Оставьте комментарий